

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH12) Paper 01 Waves and Electricity

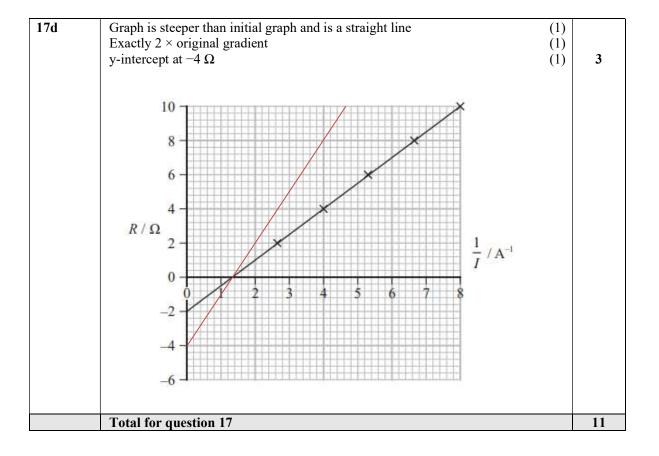
Question Number	Answer	Mark
1	C is the correct answer	(1)
	A is not the correct answer as the <i>I-V</i> graph for a diode is not a straight line through the origin.	
	B is not the correct answer as the <i>I-V</i> graph for a filament lamp is not a straight line through the origin.	
	D is not the correct answer as the <i>I-V</i> graph for a thermistor is not a straight line through the origin.	
2	B is the correct answer	(1)
	A is not the correct answer as the amplitude decreases C is not the correct answer as the speed decreases	
3	D is not the correct answer as the wavelength decreases	(1)
3	A is the correct answer	(1)
	B is not the correct answer as TIR can only take place when light is travelling from a more optically dense medium to a less optically dense medium. C is not the correct answer as TIR can only take place when light is travelling from a more optically dense medium to a less optically dense medium. D is not the correct answer as TIR can only take place when light is travelling from a more optically dense medium to a less optically dense medium.	
4	A is the correct answer	(1)
	B is not the correct answer as the distance between the diffraction grating and the screen is not represented by any letter in this equation. C is not the correct answer as this is 1/d D is not the correct answer as this is n	
5	C is the correct answer	(1)
	A is not the correct answer as the time has not been converted from ms to s. B is not the correct answer as the time has not been converted from ms to s, and the given time has not been halved. D is not the correct answer as the given time has not been halved.	
6	A is the correct answer	(1)
	B is not the correct answer as both the ammeter and voltmeter readings decrease. C is not the correct answer as the voltmeter reading decreases. D is not the correct answer as the ammeter reading decreases.	
7	C is the correct answer as the possible jumps in energy levels are from	(1)
	n=3 to n=-2, n=3 to n=1 and n=2 to n=1. A is not the correct answer as there is more than one possible energy level jump. B is not the correct answer as there are more than two possible energy level jumps. D is not the correct answer as there are less than four possible energy level	
	jumps.	

8	D is the correct answer as rarefactions are points where the pressure is a minimum.	(1)
	A is not the correct answer as there is no displacement of the particles at a compression.	
	B is not the correct answer as the pressure is a maximum at a compression.	
	C is not the correct answer as there is no displacement of the particles at a	
	rarefaction.	
9	B is the correct answer as energy transferred = VQ	(1)
	A is not the correct answer as energy transferred does not = VQt	
	C is not the correct answer as energy transferred does not = VQ/t	
	D is not the correct answer as energy transferred does not = v/Qt	
10	C is the correct answer as the distance between adjacent nodes is half a	(1)
	wavelength	
	A is not the correct answer as all points between two adjacent nodes are in phase.	
	B is not the correct answer as antinodes are points of maximum amplitude.	
	D is not the correct answer as stationary waves have no net transfer of	
	energy.	

Question Number	Answer	Mark
11	Use of $\lambda = h/p$ (1)	
	Use of $p = mv$ (1)	
	$m = 9.1 \times 10^{-31}$ (kg), so mass is that of an electron Or $m = 9.1 \times 10^{-31}$ (kg), so equals m _e Or $m = 9.1 \times 10^{-31}$ (kg), so yes it is (1) (MP3 – Do not allow answers that suggest the calculated mass is less than	3
	that of an electron, but allow "similar", "about the same") $\frac{\text{Example of calculation}}{p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J s}}{7.37 \times 10^{-10} \text{ m}} = 9.00 \times 10^{-25} \text{ kg m s}^{-1}$	
	$m = \frac{p}{v} = \frac{9.00 \times 10^{-25} \text{ kg m s}^{-1}}{9.89 \times 10^5 \text{ m s}^{-1}} = 9.10 \times 10^{-31} \text{ kg}$	
	Total for question 11	3

12ai Angle of incidence = 58° and angle of refraction = 40° (1) Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (1) Refractive index of glass = 1.3 (1) (Allow MP2 if angles of 32° and 50° are used) Example of calculation $n_1 \sin \theta_1 = n_2 \sin \theta_2$ (1.00 × sin 58° = n_2 × sin 40° n_2 = 1.32 12aii Ray drawn refracting away from the normal (1) (Normal line does not need to be drawn on diagram) (Normal line does not need to be drawn on diagram) (1) (Speed of light in glass = 1.8 × 10 ⁸ m s ⁻¹ and n = 1.63 (1) Example of calculation (1)	Answe	Answer		Mark
(Normal line does not need to be drawn on diagram) glass air Use of $n = c/v$ with $c = 3.00 \times 10^8$ ms ⁻¹ and $n = 1.63$ (1) Speed of light in glass = 1.8×10^8 m s ⁻¹ (1) Example of calculation		Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ Refractive index of glass = 1.3 (Allow MP2 if angles of 32° and 50° are used) Example of calculation $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $1.00 \times \sin 58^\circ = n_2 \times \sin 40^\circ$	(1)	3
Speed of light in glass = $1.8 \times 10^8 \mathrm{m \ s^{-1}}$ (1) Example of calculation		(Normal line does not need to be drawn on diag	ram)	1
$v = \frac{c}{n} = \frac{3.00 \times 10^8 \text{ m s}^{-1}}{1.63} = 1.84 \times 10^8 \text{ m s}^{-1}$ Total for question 12	$m s^{-1}$	Speed of light in glass = $1.8 \times 10^8 \text{ m s}^{-1}$ Example of calculation $v = \frac{c}{n} = \frac{3.00 \times 10^8 \text{ m s}^{-1}}{1.63} = 1.84 \times 10^8 \text{ m s}^{-1}$		2

Question Number		Answe	er			Mark
13a	Z has greater (cross sec	tional) area than V	V		(1)	
	So Z has smaller resista	ance than W			(1)	
	Z has greater current th	an W			(1)	
	Since $I = nAve$, with bo	oth A and $I4 \times greater = A$	ater in Z, (drift vel	locity is the same)	(1)	4
13b	Quantity	Same value	Larger value	Larger value		
		for W and Z	in W	in Z		
	Current in the wires	×			(1)	
	Resistance of the wires		×		(1)	
	Potential difference across the wires		×		(1)	
	Drift velocity of the charge carriers in the wires		×		(1)	4
			•			
	Total for question 13					8


Question Number	Answer		Mark
14ai	Use of $\frac{1}{R} = \frac{1}{500 \Omega} + \frac{1}{600 \Omega}$ Use of $V = IR$ Voltmeter reading = 6.3 (V)	(1) (1) (1)	3
	$\frac{\text{Example of calculation}}{\frac{1}{R_{\text{parallel}}}} = \frac{1}{500 \Omega} + \frac{1}{600 \Omega}, \text{ so } R_{\text{parallel}} = 273 \Omega$ $V = IR = 23.0 \times 10^{-3} \text{A} \times 273 \Omega = 6.28 \text{V}$		
14aii	p.d. across thermistor = $12 \text{ V} - 6.3 \text{ V}$ (allow ecf from ai) Use of $P = VI$ (allow use of $P = I^2R$ or $P = V^2/R$) P = 0.13 W	(1) (1) (1)	3
	Example of calculation p.d. across thermistor = $12.0 \text{ V} - 6.3 \text{ V} = 5.7 \text{ V}$ $P = VI = 5.7 \text{ V} \times 23 \times 10^{-3} \text{ A}$ P = 0.13 W		
14b	Resistance (of circuit/thermistor) increases	(1)	
	Ammeter reading decreases (dependent on MP1) Or Current decreases (dependent on MP1)	(1)	
	p.d. across thermistor increases Or <i>V=IR</i> for fixed/parallel resistors, and <i>I</i> decreases	(1)	
	Reading on voltmeter decreases (dependent on MP3) Or p.d. across fixed/parallel resistors decreases (dependent on MP3)	(1)	4
	(Allow 1 mark maximum if stated that both ammeter and voltmeter readings decrease, and no other marks have been awarded)		
	Total for question 14		10

Question Number			Answer		Mark
*15a	answer with lir content and for	kages and full how the answ	y-sustained reasoninger is structured and	a coherent and logically structured ng. Marks are awarded for indicative shows lines of reasoning. The warded for indicative content.	
	IC points	IC mark	Max linkage ma	rk Max final mark	
	6	4	2	6	
	5	3	2	5	
	4	3	1	4	
	3	2	1	3	
	2	2	0	2	
	1	1	0	1	
	0	0	0	0	
	The following reasoning.	table shows ho	ow the marks should	be awarded for structure and lines of	
				Number of marks awarded for structure of answer and sustained line of reasoning	
	with linkages	s a coherent and fully susta		2	
	Answer is partially structured with some linkages and lines of reasoning			1	
	Answer has no linkages between points and is unstructured 0				
	Or Wav At X/lou Or at X/ Construct Or cons When m Destruct This is v Or This (IC2 – do not) (IC6 – allow)	liffract (as the es spread out ad the waves a loud the path etive interfered tructive interfered oving away (ive interfered where the wave is where the taccept phase different phase different accept phase d	/phase difference ence/superposition ference/superposit from X), path/pha nce/superposition v /es are in antiphase waves have a path	ugh the gaps) is 0 at X ion when loud se difference changes when no sound is heard e difference of $\lambda/2$ c or path difference of $n\lambda$) dians)	6

15b	Light from two lamps is not coherent (1)	
	as the phase relationship/difference is not constant Or coherence requires waves to have a constant phase difference (MP2 - Allow as wavelength/frequency is not the same Or the light is not monochromatic)	2
	Total for question 15	8

Question Number	Answer		Mark
16ai	Use of area = 1.20 (m) \times 0.80 (m) Use of $I = P/A$ (needs to be a dimensionally-correct area) Use of efficiency = useful power output / total power input Efficiency = 14 %	(1) (1) (1) (1)	4
	Example of calculation P of Sun at solar cell = $I \times A = 1040 \text{ W m}^{-2} \times 1.20 \text{ m} \times 0.80 \text{ m} = 998 \text{ W}$ Efficiency = $\frac{140 \text{ W}}{998 \text{ W}} = 0.14 (14 \%)$		
16aii	Any two from: Light from the sun may not be incident on the solar panel at 90°	(1)	
	Intensity might be lower due to clouds/rain/fog	(1)	
	Light may be reflected at the solar panel	(1)	
	Pump may not be 100% efficient	(1)	
	Friction between the water and the pipe Or Energy transferred to thermal energy	(1)	2
16bi	Unpolarised has oscillations/vibrations in all/many planes Plane polarised has oscillations/vibrations in one plane which includes the direction of (wave) travel (MP3 dependent on MP1 or MP2 being awarded)	(1) (1) (1)	
	Or Unpolarised has oscillations/vibrations in all/many directions Plane polarised has oscillations/vibrations in one direction which is perpendicular to the direction of (wave) travel (MP3 dependent on MP1 or MP2 being awarded)	(1) (1) (1)	3
16bii	(Light directed through a) polarising filter	(1)	
	No change in intensity as filter is rotated Or if it was polarised, the intensity would change as the filter is rotated	(1)	2
	Total for question 16		11

Question Number	Answer		Mark
17a	Use of sum of e.m.f. = sum of p.d. Correct rearrangement leading to given equation	(1) (1)	
	Or Total resistance of circuit = $R + r$ Correct rearrangement with total resistance replaced by $\frac{\varepsilon}{I}$	(1) (1)	2
	Example of rearrangement $\varepsilon = I(R+r), \text{ so } \frac{\varepsilon}{I} = R+r, \text{ so } R = \frac{\varepsilon}{I} - r$		
17b	Gradient calculation (to calculate ε) $\varepsilon = 1.5 \text{ V}$ $r = 2 \Omega$	(1) (1) (1)	
	OR $r = 2 \Omega$ (read from y-intercept) Use of co-ordinates from the graph with the formula $\varepsilon = 1.5 \text{ V}$	(1) (1) (1)	3
17c	Current (in r/R /circuit) decreases Reference to $P = I^2r$ (Do not allow if R used instead of r) P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	
	OR V across r decreases Reference to $P = V^2/r$ (Do not allow if R used instead of r) P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	
	OR $V ext{ across } r ext{ decreases}$ $P = VI ext{ and current (in } r/R/\text{circuit) decreases}$ $P ext{ decreases, so student is correct}$ (MP3 dependent on MP2)	(1) (1) (1)	
	OR Current (in r/R /circuit) decreases $P = VI$ and p.d. across r decreases P decreases, so student is correct (MP3 dependent on MP2)	(1) (1) (1)	3

Question Number	Answer		Mark
18ai	Use of $E_k = \frac{1}{2} mv^2$ with $m = 9.11 \times 10^{-31}$ kg Conversion of J to eV Energy = 0.35 eV	(1) (1) (1)	3
	Example of calculation $E_{k} = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times (3.51 \times 10^{5} \text{ m s}^{-1})^{2} = 5.60 \times 10^{-20} \text{ J}$ $E_{k} = \frac{5.60 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ J eV}^{-1}} = 0.35 \text{ eV}$		
18aii	Use of $v = f\lambda$ with $v = 3.00 \times 10^8$ m s ⁻¹ Use of $E = hf$ Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ $\Phi = 5.86 \times 10^{-19}$ (J), so the metal is magnesium	(1) (1) (1) (1)	4
	Example of calculation $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J s} \times 3.00 \times 10^8 \text{ m s}^{-1}}{310 \times 10^{-9} \text{ m}} = 6.42 \times 10^{-19} \text{ J}$ $\Phi = hf - \frac{1}{2} mv_{\text{max}}^2 = 6.42 \times 10^{-19} \text{ J} - 5.60 \times 10^{-20} \text{ J} = 5.86 \times 10^{-19} \text{ J}$ $\Phi = 5.86 \times 10^{-19} \text{ J}$		
18b	Each photon only interacts with one electron	(1)	
	Electrons absorb energy from photons Or photons transfer energy to electrons	(1)	
	Minimum energy required for an electron to be emitted	(1)	
	Higher (photon) energy related to higher frequency(, so frequency of radiation has to be above a particular value)	(1)	4
	(MP3 – allow correct reference to work function) (MP4 – allow reference to E = hf)		
18c	Any two from:		
	Intensity is related to the number of photons (per second)	(1)	
	Intensity is related to the number of (photo)electrons (per second)	(1)	
	Intensity does not affect the energy (of the photons/photoelectrons)	(1)	2
	Total for question 18		13